Ovine forestomach matrix biomaterial is a broad spectrum inhibitor of matrix metalloproteinases and neutrophil elastase.
نویسندگان
چکیده
Proteases play a critical role in the ordered remodelling of extracellular matrix (ECM) components during wound healing and tissue regeneration. However, the usually ordered proteolysis is compromised in chronic wounds due to over-expression and high concentrations of matrix metalloproteinase's (MMPs) and neutrophil elastase (NE). Ovine forestomach matrix (OFM) is a decellularised extracellular matrix-based biomaterial developed for tissue regeneration applications, including the treatment of chronic wounds, and is a heterogeneous mixture of ECM proteins and proteoglycans that retains the native structural and functional characteristics of tissue ECM. Given the diverse molecular species present in OFM, we hypothesised that OFM may contain components or fragments that inhibit MMP and NE activity. An extract of OFM was shown to be a potent inhibitor of a range of tissue MMPs (IC50 s = 23 ± 5 to 115 ± 14 µg/ml) and NE (IC50 = 157 ± 37 µg/ml), and was more potent than extracts prepared from a known protease modulating wound dressing. The broad spectrum activity of OFM against different classes of MMPs (i.e. collagenases, gelatinases and stromelysins) may provide a clinical advantage by more effectively addressing the protease imbalance seen in chronic wounds.
منابع مشابه
Ovine Forestomach Matrix as a Substrate for Single-Stage Split-Thickness Graft Reconstruction
OBJECTIVE Split skin graft reconstruction of scalp defects often leaves an obvious contour defect. Here, we aimed to demonstrate the use of a decellularized extracellular matrix biomaterial, termed ovine forestomach matrix (OFM), as a substrate for split-thickness skin grafts (STSGs) for scalp reconstruction. METHODS Following full-thickness tumor excision, OFM was applied directly to skull p...
متن کاملMatrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis.
Neutrophil elastase is the most significant predictor of bronchiectasis in early-life cystic fibrosis; however, the causal link between neutrophil elastase and airway damage is not well understood. Matrix metalloproteinases (MMPs) play a crucial role in extracellular matrix modelling and are activated by neutrophil elastase. The aim of this study was to assess if MMP activation positively corre...
متن کاملElastase-induced intracranial aneurysms in hypertensive mice.
Mechanisms of formation and growth of intracranial aneurysms are poorly understood. To investigate the pathophysiology of intracranial aneurysms, an animal model of intracranial aneurysm yielding a high incidence of large aneurysm formation within a short incubation period is needed. We combined two well-known clinical factors associated with human intracranial aneurysms, hypertension and the d...
متن کاملSynergistic neutrophil elastase-cytokine interaction degrades collagen in three-dimensional culture.
Proteolytic degradation of extracellular matrix is thought to play an important role in many lung disorders. In the current study, human lung fibroblasts were cast into type I collagen gels and floated in medium containing elastase, cytomix (combination of tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma), or both. After 5 days, gel collagen content was determined by measuri...
متن کاملEPI-hNE4, a proteolysis-resistant inhibitor of human neutrophil elastase and potential anti-inflammatory drug for treating cystic fibrosis.
EPI-hNE4 (depelstat) is a potent inhibitor of human neutrophil elastase derived from human inter-alpha-trypsin inhibitor and designed to control the excess proteolytic activity in the sputum of cystic fibrosis patients. We analyzed its resistance to the proteolysis it is likely to encounter at inflammatory sites in vivo. EPI-hNE4 resisted hydrolysis by neutrophil matrix metalloproteases (MMPs) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International wound journal
دوره 11 4 شماره
صفحات -
تاریخ انتشار 2014